Base excision repair defects invoke hypersensitivity to PARP inhibition.

نویسندگان

  • Julie K Horton
  • Donna F Stefanick
  • Rajendra Prasad
  • Natalie R Gassman
  • Padmini S Kedar
  • Samuel H Wilson
چکیده

UNLABELLED PARP-1 is important for the recognition of both endogenous and exogenous DNA damage, and binds to DNA strand breaks including intermediates of base excision repair (BER). Once DNA-bound, PARP-1 becomes catalytically activated synthesizing PAR polymers onto itself and other repair factors (PARylation). As a result, BER repair proteins such as XRCC1 and DNA polymerase β (pol β) are more efficiently and rapidly recruited to sites of DNA damage. In the presence of an inhibitor of PARP activity (PARPi), PARP-1 binds to sites of DNA damage, but PARylation is prevented. BER enzyme recruitment is hindered, but binding of PARP-1 to DNA is stabilized, impeding DNA repair and leading to double-strand DNA breaks (DSB). Deficiencies in pol β(-/-) and Xrcc1(-/-) cells resulted in hypersensitivity to the PARP inhibitor 4-AN and reexpression of pol β or XRCC1, in these contexts, reversed the 4-AN hypersensitivity phenotype. BER deficiencies also showed evidence of replication defects that lead to DSB-induced apoptosis upon PARPi treatment. Finally, the clinically relevant PARP inhibitors olaparib and veliparib also exhibited hypersensitivity in both pol β(-/-) and Xrcc1(-/-) BER-deficient cells. These results reveal heightened sensitivity to PARPi as a function of BER deficiency. IMPLICATIONS BER deficiency represents a new therapeutic opportunity to enhance PARPi efficacy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Damage and Repair Base Excision Repair Defects Invoke Hypersensitivity to PARP Inhibition

PARP-1 is important for the recognition of both endogenous and exogenous DNA damage, and binds to DNA strand breaks including intermediates of base excision repair (BER). Once DNA-bound, PARP-1 becomes catalytically activated synthesizing PAR polymers onto itself and other repair factors (PARylation). As a result, BER repair proteins such as XRCC1 and DNA polymerase b (pol b) are more efficient...

متن کامل

Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1.

Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair ...

متن کامل

Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress.

Cockayne syndrome (CS) is a rare genetic disorder characterized as a segmental premature-aging syndrome. The CS group B (CSB) protein has previously been implicated in transcription-coupled repair, transcriptional elongation, and restoration of RNA synthesis after DNA damage. Recently, evidence for a role of CSB in base excision repair of oxidative DNA lesions has accumulated. In our search to ...

متن کامل

PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility

The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, isogenic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and trig...

متن کامل

Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate

Base excision repair (BER) represents the most important repair pathway of endogenous DNA lesions. Initially, a base damage is recognized, excised and a DNA single-strand break (SSB) intermediate forms. The SSB is then ligated, a process that employs proteins also involved in SSB repair, e.g. XRCC1, Ligase III and possibly PARP1. Here, we confirm the role of XRCC1 and PARP in direct SSB repair....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2014